Job offers

Submit a job offer

Would you like to publish a job offer on this page free of charge?

Veröf­fent­licht: 17. September 2025

Univer­si­täts­pro­fessur KI in der Arbeits‑, Sozial- und Präven­tiv­me­dizin (Bes. Gr. W2)

Die Univer­si­täts­me­dizin Göttingen (UMG) verfolgt im Rahmen ihrer strate­gi­schen Planung die konse­quente Weiter­ent­wicklung ihrer profil­bil­denden Forschungs­schwer­punkte Molekulare Zellbio­logie, Neuro­wis­sen­schaften, Herz-Kreislauf-Medizin und Onkologie mit trans­la­tio­nalen Ansätzen u.a. als Partner­standort der Gesund­heits­for­schungs­zentren Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Deutsches Zentrum für Neuro­de­ge­nerative Erkran­kungen (DZNE) und Deutsches Zentrum für Kinder- und Jugend­ge­sundheit (DZKJ). Die UMG ist auf dem Göttingen Campus eng vernetzt mit den natur- und biowis­sen­schaft­lichen Einrich­tungen der Univer­sität sowie den außer­uni­ver­si­tären Einrich­tungen am Standort.

 

Das Institut für Arbeits‑, Sozial- und Präven­tiv­me­dizin der Univer­si­täts­me­dizin Göttingen mit seinen Stand­orten Göttingen und Wolfsburg (https://arbeitsmedizin.umg.eu) erforscht moderne Arbeits­welten in einer digita­li­sierten Gesell­schaft. Es legt einen beson­deren Fokus auf gesell­schaft­liche, indus­trielle und unter­neh­me­rische Trans­for­ma­ti­ons­pro­zesse, Digita­li­sierung sowie den Einsatz Künst­licher Intel­ligenz (KI) zur Förderung von Prävention und Gesundheit im Arbeits­kontext. Das seit Ende 2024 unter neuer Leitung stehende Institut für Arbeits‑, Sozial- und Präven­tiv­me­dizin der UMG gehört zum Bereich der Versor­gungs­for­schung der UMG mit einer Spezia­li­sierung auf KI unter­stützte Forschungs­an­sätze. Für die Weiter­ent­wicklung dieses Profils ist eine

Univer­si­täts­pro­fessur

KI in der Arbeits‑, Sozial- und Präven­tiv­me­dizin (Bes. Gr. W2)

 

zum nächst­mög­lichen Zeitpunkt auf Dauer zu besetzen.

Das Institut ist eng vernetzt mit weiteren wissen­schaft­lichen Einrich­tungen und Fakul­täten der Univer­sität Göttingen sowie mit überre­gio­nalen Initia­tiven wie dem Campus-Institut Data Science (CIDAS), der Sektion Medizi­nische Daten­wis­sen­schaften (MeDaS), und dem Nieder­säch­si­schen Zentrum für KI und kausale Methoden in der Medizin (CAIMed). Koope­ra­tionen mit inter­na­tio­nalen Großun­ter­nehmen, darunter die Volks­wagen AG, ermög­lichen Zugang zu umfang­reichen und vielfäl­tigen Daten­sätzen für die Forschung.

Die Stellen­in­ha­berin oder der Stellen­in­haber (m/w/d) soll den Bereich der Künst­lichen Intel­ligenz im Kontext von Arbeits‑, Sozial- und Präven­tiv­me­dizin in Forschung und Lehre maßgeblich vertreten und gemeinsam mit der Insti­tuts­leitung weiter­ent­wi­ckeln. Die Integration von KI in die Arbeits- und Sozial­me­dizin steht noch am Anfang, ihre aktive Gestaltung ist eine zentrale Zukunfts­aufgabe für arbeits- und sozial­me­di­zi­nische Forschung, Praxis und Lehre.

 

Ihre Aufgaben:

  • Aufbau des Forschungs­schwer­punktes „KI in der Arbeits‑, Sozial- und Präven­tiv­me­dizin“
    • Einwerben dritt­mit­tel­ge­för­derter Forschungs­pro­jekte
    • Engagement in der univer­si­tären Lehre und Betreuung von Dies umfasst bestehende Lehrauf­gaben der Univer­si­täts­me­dizin Göttingen und der Univer­sität Göttingen sowie der Konzep­tua­li­sierung neuen Lehran­gebote mit den Schwer­punkt KI.
    • Aufgaben der akade­mi­schen Selbst­ver­waltung

 

  • Grund­la­gen­for­schung in der KI und kausalen Methoden wie die Entwicklung, Unter­su­chung und Anwendung von Methoden zur kausalen Inferenz und zur Evaluation von Künst­licher Intel­ligenz
  • (Weiter-)Entwicklung prädik­tiver Systeme im Kontext Gesundheit, Visua­li­sierung komplexer Zusam­men­hänge, Bild- und Video­ana­lysen sowie Muster­er­ken­nungen
  • Entwicklung, Validierung und Imple­men­tierung von KI-Algorithmen und ‑Tools zur Analyse und Vorhersage gesund­heits­be­zo­gener Ereig­nisse, Optimierung von Prozessen sowie zur Entschei­dungs­un­ter­stützung im
  • Validierung von Modellen zur Sicher­stellung der Genau­igkeit und Zuver­läs­sigkeit
  • Auswertung umfang­reicher Daten (Big Data) (z. B. von Kranken­kassen und Großun­ter­nehmen) im Kontext von Gesundheit und Prävention

 

Anfor­de­rungen: Profil

  • einschlä­giges abgeschlos­senes wissen­schaft­liches Hochschul­studium (z. B. Statistik, Infor­matik, KI, Epide­mio­logie, Mathe­matik, Data Science oder einem verwandten Bereich)
  • Heraus­ra­gende Promotion in Statistik, Mathe­matik, KI oder einem verwandten Fach mit starken quanti­ta­tiven Kompo­nenten
  • eigen­ständige wissen­schaft­liche Tätigkeit auf dem Gebiet der KI, Statistik oder Data Science nach der Promotion
  • Erfahrung in  der  Entwicklung  und  Anwendung  von  Methoden  zur  kausalen  Inferenz  und Evaluation von Künst­licher Intel­ligenz, präfe­riert in der Medizin
  • Kennt­nisse in Daten­bank­tech­no­logien und Big Data
  • Erfah­rungen bei       der       Einwerbung          von       Dritt­mitteln          und       in       inter­dis­zi­pli­nären Forschungs­ko­ope­ra­tionen
  • Erfah­rungen in der Lehre und akade­mi­schen Selbst­ver­waltung
  • Sprach­kennt­nisse (CEFR-Niveau): Englisch mindestens C1
  • Kennt­nisse im Bereich Gesund­heits­daten und ‑systeme sind von Vorteil

 

Die Einstel­lungs­vor­aus­set­zungen ergeben sich aus § 25 des Nieder­säch­si­schen Hochschul­ge­setzes in der zurzeit geltenden Fassung. Die UMG besitzt das Berufungs­recht.

Bewer­bungen  von  Wissen­schaft­le­rinnen  und  Wissen­schaftlern  aus  dem  Ausland  sind  ausdrücklich erwünscht.

Die UMG strebt eine Erhöhung des Frauen­an­teils an und fordert daher quali­fi­zierte Frauen ausdrücklich zur Bewerbung auf. Schwer­be­hin­derte werden bei entspre­chender Eignung bevorzugt berück­sichtigt.

Bitte  reichen  Sie  Ihre  Bewer­bungs­un­ter­lagen  webba­siert  unter  https://berufungsportal.umg.eu  bis spätestens 12.11.2025 ein.

Bei Fragen stehen wir unter berufungsportal@med.uni‐goettingen.de gerne zur Verfügung.

 

 

Veröf­fent­licht: 17. September 2025

W2 Profes­sorship with tenure track to W3 in Compu­ta­tional Biology (f/m/d)

The Faculty of Biology and Psychology at the University of Göttingen invites appli­ca­tions for a temporary profes­sorship with civil servant status (grade W2 NBesO) with tenure track (grade W3 NBesO) at the Institute of Micro­biology and Genetics and the Campus Institute Data Science (CIDAS) starting at the earliest possible date. The profes­sorship is part of the programme for digiti­sation profes­sor­ships for Lower Saxony (“Digita­li­sie­rungs­pro­fes­suren für Nieder­sachsen”) by the Lower Saxony Ministry of Science and Culture (MWK):

W2 Profes­sorship

with tenure track to W3 in

Compu­ta­tional Biology (f/m/d)

The successful candidate will initially be appointed for a period of five years. Transfer to a permanent profes­sorship (W3) shall take place after a positive evaluation without the position being readver­tised.

We are looking for a committed and team-oriented colleague to represent the field of data-driven research and teaching in life sciences. The post holder will perform research and teaching in the field of big data methods. This may include their explo­ration, develo­pment and appli­cation, e.g., digiti­sation, analysis, visua­li­sation, and integration of large amounts of data obtained using high-throughput methods on biomole­cules (genomics, transcrip­tomics, proteomics, metabo­lomics, etc.) and/or imaging methods/ high-throughput methods of pheno­typing (phenomics). In addition to identi­fying colla­bo­ration oppor­tu­nities with ongoing initia­tives, developing concepts for new colla­bo­rative projects in the field of biology is of crucial importance.

In terms of teaching, the post holder will contribute to inter­di­sci­plinary Bachelor’s and Master’s degree programmes by repre­senting the field of biolo­gical data analysis. Streng­thening and further develo­pment of the Bachelor’s degree programmes “Biology” and “Applied Data Science”, as well as of the Master’s degree programmes “Applied Data Science” and “Compu­ta­tional Biology and Bioin­for­matics” will be the focus. Furthermore, parti­ci­pation in the Bachelor’s degree programme “Bioche­mistry” will be expected. The holder of the position will be further expected to contribute to the expansion of data expertise in the Master’s degree programmes “Molecular Life Science” and “Develo­p­mental, Neuronal and Behavioral Biology”. The University of Göttingen is committed to research-oriented teaching.

Appointment requi­re­ments are stipu­lated by Article 25 of the Lower Saxony Higher Education Act in the most current version of that law. As a rule, junior professors and other members of the University of Göttingen can only be considered for a profes­sorial appointment if after the completion of the doctoral thesis they have trans­ferred to another university or worked for a minimum of two years in research elsewhere. The University of Göttingen is a Public Law Foundation and thereby entitled to award profes­sor­ships. Details will be provided upon request.

Appli­ca­tions from abroad are expli­citly welcome. The University of Göttingen strives to increase the proportion of women in areas where women are under­re­pre­sented and therefore expli­citly invites qualified female scholars to apply. The University has committed itself to being a family-friendly insti­tution and supports its employees in balancing work and family life. The University is parti­cu­larly committed to the profes­sional parti­ci­pation of disabled employees and therefore welcomes appli­ca­tions from persons with disabi­lities. In the case of equivalent quali­fi­ca­tions, appli­ca­tions from disabled persons will be given prefe­rence. In order for the University to be able to protect the interests of the applicant, infor­mation about a disability or equal status should be included in the appli­cation.

Please send your appli­cation as one PDF file including CV, a publi­cation list, a list of your acquired third-party funds, and a record of your teaching and research activity to the Dean’s Office of the Faculty of Biology and Psychology (dekanbio@uni-goettingen.de) by October 23, 2025.

 

If you have further questions, please contact Prof. Dr. Rolf Daniel (dekanbio@uni-goettingen.de) or Prof. Dr. Jan de Vries (devries.jan@uni-goettingen.de).

The submission of the appli­cation consti­tutes consent under the data protection law and allows us to process your appli­cation data. For more details on the legal basis and data use, please refer to the infor­mation sheet on the General Data Protection Regulation (GDPR).

Please note that only the German version of this job announcement is legally binding (https://uni-goettingen.de/de/700631.html).

 

Veröf­fent­licht: 5. September 2025

Systemadministrator/in (w/m/d)

Das Forschungs­zentrum Borstel ist das Lungen­zentrum in der Leibniz Gemein­schaft. Wir sind ein inter­na­tional agierendes, von Bund und Ländern finan­ziertes Wissen­schafts­un­ter­nehmen. Unsere zentrale Aufgabe ist die Grund­lagen- und trans­la­tionale Forschung auf dem Gebiet der Atemwegs­er­kran­kungen. Wir betreiben umfang­reiche Labor- und Forschungs­in­fra­struk­turen. Akade­misch sind wir mit den benach­barten Univer­si­täten und klinisch mit dem Univer­si­täts­kli­nikum Schleswig-Holstein eng verbunden. Wir haben ein Ziel: Bestehende Methoden zur Erkennung, Vermeidung und Behandlung von Lungen­er­kran­kungen zu verbessern und neue, innovative Therapieansätze zu entwi­ckeln.
Für die bioin­for­ma­tische Analyse großer moleku­larer Daten, aktuell insbe­sondere Sequen­zier­daten, verfügt das Forschungs­zentrum z.T. in einzelnen Arbeits­gruppen über Hochleis­tungs­rechner und Rechen­cluster (in Summe >240 Kerne) sowie entspre­chende Speicher­lö­sungen (>1 PB). In den nächsten Jahren sollen weitere Rechen- und Speicher­ka­pa­zi­täten angeschafft werden und zentrumsweit ein Rechen­cluster für bioin­for­ma­tische Daten­analyse sowie Speicher für Forschungs­daten etabliert werden.

IHRE AUFGABEN
• Erwei­terung der Infra­struktur für das wissen­schaft­liche Rechnen und für das Speichern von Forschungs­daten
• Einrichtung, Verwaltung und Pflege eines high-perfor­­­mance Computer-Clusters (etwa 10 Hochleis­tungs­rechner)
• Verwaltung der Speicher­systeme von aktuell in Summe > 1 PB
• Monitoring und Prüfung von Storage Backups und Cluster
• Linux Betrie­b­s­­­system-Instal­lation und ‑Wartung und Software-Instal­lation und ‑Upgrade
• Koordi­nation mit der IT-Abteilung z.B. zu Netzwerk, zentraler Userver­waltung, etc.
• Dokumen­tation der Systeme, adminis­tra­tiver Aufgaben und von Prozessen sowie Erstellen von best practices für Nutzer
• Adminis­tration von Arbeits­platz­rechnern und User Support

IHRE KOMPE­TENZEN
• Erfolg­reich abgeschlossene Ausbildung Fachin­for­matik oder Bache­lor­ab­schluss Infor­matik oder eine vergleichbare Quali­fi­kation
• Erfahrung in der Konfi­gu­ration und Verwaltung von Linux Systemen
• Kennt­nisse von Hardware- und Netzwerk­ar­chi­tektur sowie IT-Sicher­heits­­­prin­­­zipien
• Vertrautheit mit Virtua­li­sie­rungs­tech­niken (insbe­sondere Proxmox) oder Bereit­schaft zur kurzfris­tigen Einar­beitung
• Erfahrung mit SLURM sowie in der Linux-Syste­m­a­­d­­­mi­­­nis­­­tration in einem Forschungs­umfeld vorteilhaft
• Interesse Systeme zu gestalten und optimieren sowie sich in IT-relevante Aspekte bioin­for­ma­ti­scher Daten­analyse einzu­ar­beiten

UNSER ANGEBOT
• Arbeiten in einem renom­mierten Forschungs­zentrum vor den Toren Hamburgs im wachsenden Bereich Forschungs­daten
• Möglichkeit, sich feder­führend in die Ausge­staltung der Weiter­ent­wicklung der Systeme einzu­bringen
• Ein eigen­ver­ant­wort­licher Arbeits­be­reich innerhalb eines motivierten Teams
• Vergütung nach TVöD-VKA einschließlich aller im öffent­lichen Dienst üblichen Leistungen
• Famili­en­freund­liche Arbeits­be­din­gungen, flexible Arbeits­zeiten, betrieb­liche Gesund­heits­för­derung, JobRad, Jobticket und JobFitness

Das FZB ist für das Audit „berufund­fa­milie“ zerti­fi­ziert und fördert gezielt die Verein­barkeit von Beruf und Familie. Das unter­re­prä­sen­tierte Geschlecht wird bei gleicher fachlicher und persön­licher Eignung besonders berück­sichtigt. Ebenso werden Schwer­be­hin­derte bei sonst gleicher Eignung bevorzugt berück­sichtigt. Weitere Infor­ma­tionen zu unserer Rekru­tie­rungs­policy sowie unserer Zerti­fi­zierung „HR Excel­lence in Research“ finden Sie auf unserer Homepage. Rückfragen beant­wortet Ihnen gern Frau Prof. Dr. Wohlers (Leitung Data Science). Bitte senden Sie Ihre Bewerbung mit den üblichen Unter­lagen (Anschreiben, Lebenslauf ohne Lichtbild, Zeugnisse und ggf. Zerti­fikate) bis zum 12.10.2025 über LinkedIn (https://www.linkedin.com/jobs/view/4293923230/) oder unsere Website www.fz-borstel.de.

Veröf­fent­licht: 19. August 2025

Compu­ta­tional Scientist Cancer Antigen Discovery(m/f/d) — full time — Mainz

We seek a highly motivated Compu­ta­tional Scientist (m/f/d) for Cancer Antigen Discovery to join our Compu­ta­tional Genomics unit. We are an inter­di­sci­plinary team of scien­tists, PhD students, and software engineers passionate about developing bioin­for­matics tools to identify biomarkers and thera­peutic targets for perso­na­lized immuno­the­rapies against cancer. In close colla­bo­ration with other teams at TRON, as well as with partners from academia, clinics and industry, we apply our compu­ta­tional approaches to discover antigen targets and translate them into clinical practice.

The successful candidate will be respon­sible for identi­fying and priori­tizing novel classes of tumor-specific antigens for perso­na­lized mRNA vaccines and other immuno­the­rapies. This will be achieved through the analysis of multi-omics data, using innovative compu­ta­tional approaches supported by validation through molecular and immuno­lo­gical assays.

Your tasks and respon­si­bi­lities:

  • Analyze large cohorts of genomic, epige­nomic, transcrip­tomic and proteomics data to identify and prioritize novel tumor-specific candidate antigens relevant for cancer immuno­the­rapies.
  • Develop compu­ta­tional pipelines for antigen target detection in individual patients for perso­na­lized therapies.
  • Contribute to the design of validation strategies and colla­borate on confirming targets through molecular and immuno­lo­gical assays.
  • Present and discuss in internal meetings and inter­na­tional confe­rences, writing R&D reports and scien­tific publi­ca­tions.

What you bring:

  • D. in Compu­ta­tional Biology, Immuno-Oncology, or a related data-driven field with at least 2 years of postdoc­toral research experience in academia or industry.
  • Demons­trated scien­tific expertise in tumor immunology and target discovery for immuno­the­rapies.
  • Excellent programming skills for repro­du­cible data analysis in Python or R.
  • Experience analyzing next-generation sequencing (NGS) data. Experience with mass spectro­­­metry-based immun­o­pep­ti­domics data analysis is a plus.
  • Hands-on expertise with version control systems (e.g., Git), workflow managers (e.g., Nextflow or Snakemake), and high-perfor­­­mance computing environ­ments.
  • Experience leading research projects in a multi­di­sci­plinary environment and comfor­table working in a dynamic and evolving environment.

Enthu­siasm and curiosity for the diverse activities of our research institute completes your profile.

 

We offer:

  • A dynamic, innovative, and creative research environment with strong expertise in immuno­the­rapies.
  • An open, collegial, and supportive working atmosphere in a respectful organiza­tional culture
  • A highly diverse and inclusive workforce
  • Access to our GPU-accele­rated HPC cluster and labora­tories with cutting-edge sequencing techno­logies and molecular assays.
  • Perfor­­­mance-based remune­ration and other benefits
  • Oppor­tu­nities for perso­na­lized profes­sional develo­pment
  • Conve­nient access via public transport and car as well as bicycle parking spaces
  • The possi­bility of hybrid working arran­ge­ments

TRON is an inter­na­tio­nally recog­nised institute for appli­­­­­cation-oriented research. We combine the strengths of academic research with the requi­re­ments of quality-controlled indus­trial develo­p­ments. At TRON, we share a common mission to develop innovative solutions for the immuno­the­ra­peutic treatment of cancer, infec­tious diseases and other serious diseases with high medicinal need for develo­pment.

TRON was founded in Mainz in 2010 and works in close coope­ration with univer­sities and hospitals as well as with regional, national and inter­na­tional research insti­tu­tions and pharmaceu­tical companies.

As part of our team, you have the oppor­tunity to be at the forefront of trans­la­tional science with us.

If all this appeals to you, we look forward to getting to know you.

Please send us your complete and infor­mative appli­cation documents (cover letter, CV, references) in a single document of max. 5 MB by e‑mail to Human Resources at jobs (at) tron-mainz.de,
Job-ID: 43104–25–02-WAPRO.

For more infor­mation, visit our homepage at www.tron-mainz.de

Veröf­fent­licht: 19. August 2025

‘Professor in Machine Learning for Sustainable Processes and Materials

The Technical University of Munich (TUM) invites appli­ca­tions for the position of

 

Professor

in »Machine Learning

for Sustainable Processes and Materials«

 

W3 Associate Professor; to begin as soon as possible.

 

Scien­tific environment

The profes­sorship will be assigned to the TUM Campus Straubing for Biotech­nology and Sustaina­bility and will play a central role in inter­di­sci­plinary and trans­di­sci­plinary research at the interface between data science, life sciences, and bioeco­nomics. The professor will closely cooperate with the TUM School of Compu­tation, Infor­mation and Technology (CIT), the TUM School of Life Sciences (LS), and with the Excel­lence Cluster BioSysteM.

 

Respon­si­bi­lities

The respon­si­bi­lities include research and teaching as well as the promotion of early-career scien­tists. We seek to appoint an expert in the research area of Machine Learning for Sustainable Processes and Materials with a focus on data-driven methods for modeling, analyzing, and optimizing complex biolo­gical, biotech­no­lo­gical and agricul­tural systems. The main focus is on machine learning approaches, in parti­cular statis­tical learning, reinforcement learning, deep learning, and computer vision, as well as the statis­tical and bioin­for­matics analysis of chemical and biolo­gical processes and systems, and to gain a deeper under­standing of bioche­mical and biotech­no­lo­gical processes and systems through the integration of modern data science, machine learning and bioin­for­matics methods. This also includes modern in silico methods for analyzing genomic, genetic, and pheno­typic data. The focus is on applying data science methods to support the transition to a sustainable bioeconomy, taking into account economic and social science aspects. Teaching respon­si­bi­lities include courses in the university’s bachelor and master programs at TUMCS (Profes­sional Profile Bioeconomy) in German and English.

 

Quali­fi­ca­tions

We are looking for candi­dates who have demons­trated excellent achie­ve­ments in research and teaching in an inter­na­tio­nally recognized scien­tific environment, relative to the relevant career level (please see www.tum.de/en/faculty-recruiting-faq/ for further infor­mation).

A university degree in bioin­for­matics and an outstanding doctoral degree or equivalent scien­tific quali­fi­cation, as well as pedago­gical aptitude, are prere­qui­sites. Substantial research experience abroad is expected. Successful appli­cants will have the proven ability to acquire and to lead coope­rative research projects and to attracting third-party funding.

 

Our Offer

Based on the best inter­na­tional standards and trans­parent perfor­mance criteria, TUM offers a merit-based academic career through a permanent position as Associate Professor, and on to Full Professor. The regula­tions of the TUM Faculty Recruitment and Career System apply.

TUM provides excellent working condi­tions in a lively scien­tific community, embedded in the vibrant research environment of the Greater Munich Area and in Straubing. The TUM environment is multi­cul­tural, with English serving as a common interface for scien­tific inter­action. TUM offers attractive and perfor­­­mance-based salary condi­tions and social benefits.

The TUM Munich Dual Career Office (MDCO) provides tailored career consulting to the partners of newly appointed professors. The MDCO assists the relocation and integration of new professors, their partners and accom­panying family members.

 

Your Appli­cation

TUM is an equal oppor­tunity employer and expli­citly encou­rages appli­ca­tions from women. The position is suitable for disabled persons. Disabled appli­cants will be given prefe­rence in case of generally equivalent suita­bility, aptitude and profes­sional perfor­mance. Appli­cation documents should be submitted in accordance with TUM’s appli­cation guide­lines for professors. These guide­lines and detailed infor­mation about the TUM Faculty Recruitment and Career System are available at www.tum.de/faculty-recruiting. Here you will also find TUM’s infor­mation on collecting and processing personal data as part of the appli­cation process.

 

Please submit your appli­cation by 30 September 2025 via the TUM recruitment portal: www.recruit.tum.de.

Veröf­fent­licht: 19. August 2025

Bioin­for­matics Software Developer (m/f/d) — fulltime — Mainz

We are seeking a motivated Bioin­for­matics Software Developer (m/f/d) to join our Compu­ta­tional Genomics unit. We are an inter­di­sci­plinary team of scien­tists, PhD students, and software engineers who develop bioin­for­matics tools, predictive models, and data analysis pipelines to identify biomarkers and thera­peutic targets for perso­na­lized immuno­the­rapies against cancer. In close colla­bo­ration with multiple teams at TRON, as well as with partners from academia, clinics, and industry, we apply and validate our compu­ta­tional approaches and translate them into clinical practice.

The successful candidate will develop and maintain bioin­for­matics software and fully repro­du­cible, end-to-end workflows to analyze diverse biolo­gical datasets, including genomics and transcrip­tomics sequencing data from large cohorts of tumor samples.

 

Your tasks and respon­si­bi­lities:

  • Design, implement, and maintain compu­ta­tional analysis tools and pipelines for high-throughput sequencing data, including WGS, WES, RNA-seq, scRNA-seq, spatial transcrip­tomics and long-read sequencing.
  • Improve in-house bioin­for­matics pipelines to enhance accuracy, repro­du­ci­bility, and develo­pment lifecycle automation.
  • Benchmark and syste­ma­ti­cally test in-house and public methods with experi­mental confir­mation data
  • Build database and predictive AI systems for the discovery of novel therapy targets and biomarkers
  • Provide guidance and support to PhD students and scien­tists on best practices in repro­du­cible data science and high perfor­mance compute workflows
  • Colla­borate closely with multi­di­sci­plinary teams of developers, techni­cians, scien­tists, and PhD students across multiple projects

 

What you bring:

  • MSc in Bioin­for­matics, Computer Science, or a related field
  • At least two years of profes­sional experience in bioin­for­matics software develo­pment
  • Advanced programming skills in Python and Nextflow; experience with R and Snakemake or other workflow languages is a plus
  • Profi­ciency in struc­tured software develo­pment practices, including version control, testing, contai­ne­rization, and CI/CD systems
  • Hands-on experience with Linux-based compute clusters, job schedulers, and cloud computing
  • Familiarity with next-generation sequencing (NGS) data and related bioin­for­matics tools is advan­ta­geous
  • Knowledge of databases and machine learning libraries is a plus

Enthu­siasm and curiosity for the diverse activities of our research institute complete your profile.

We offer:

  • A dynamic, innovative, and creative research environment
  • An open, collegial, and supportive working atmosphere in a respectful organiza­tional culture
  • A highly diverse and inclusive workforce
  • Access to our GPU-accele­rated HPC cluster and labora­tories with cutting-edge sequencing techno­logies
  • Perfor­­­mance-based remune­ration and other benefits
  • Oppor­tu­nities for perso­na­lized profes­sional develo­pment
  • Conve­nient access via public transport and car as well as bicycle parking spaces
  • The possi­bility of hybrid working arran­ge­ments

TRON is an inter­na­tio­nally recog­nised institute for appli­­­­­cation-oriented research. We combine the strengths of academic research with the requi­re­ments of quality-controlled indus­trial develo­p­ments. At TRON, we share a common mission to develop innovative solutions for the immuno­the­ra­peutic treatment of cancer, infec­tious diseases and other serious diseases with high medicinal need for develo­pment.

TRON was founded in Mainz in 2010 and works in close coope­ration with univer­sities and hospitals as well as with regional, national and inter­na­tional research insti­tu­tions and pharmaceu­tical companies.

As part of our team, you will have the oppor­tunity to work at the cutting edge of trans­la­tional science.

If all this appeals to you, we look forward to getting to know you.

Please send us your complete and infor­mative appli­cation documents (cover letter, CV, references) in a single document of max. 5 MB by e‑mail to Human Resources at jobs (at) tron-mainz.de,
Job-ID: 43104–25–01-WAMSC.

For more infor­mation, visit our homepage at www.tron-mainz.de and our GitHub page: https://github.com/TRON-Bioinformatics

Submit a job offer now

Would you like to publish a job offer on this page free of charge?